

Object Oriented Finite Element Analysis for Materials Scientists

Stephen Langer

Andrew Reid

Seung-III Haan

Edwin Garcia

Edwin Fuller

W. Craig Carter

Panos Charalambides

Zi-Kui Liu

NIST ITL

Drexel (NIST ITL)*

UMBC (NIST MSEL)*

Penn State (NSF-ITR)*

NIST MSEL

MIT

UMBC

Penn State

*NIST Center for Theoretical and Computational Materials Science

Outline of the Talk

- What?
- Examples:
 - Thermal Barrier Coatings
 - MatCASE
- OOF2
 - Why?
 - How?
 - Design Goals
 - Ingredients

Goals:

- Elucidate the role of heterogeneous, stochastic microstructures on the bulk physical properties of materials.
- Correlate properties to microstructure
 - to shorten the materials development cycle.
 - to improve materials and processing.
 - to enable more reliable design.
- Provide an extensible platform for computing general physics of microstructures.
- A "Research Problem Solving Environment" for materials scientists.

 Commercial finite element packages work best with large scale systems with regularly shaped components.

- Commercial finite element packages work best with large scale systems with regularly shaped components.
- Materials systems are small scale and disordered.

- Commercial finite element packages work best with large scale systems with regularly shaped components.
- Materials systems are small scale and disordered.
- OOF is designed to answer the questions that materials scientists want to ask.

• OOF is easy to use.

Fitting a Mesh to Pixel Boundaries

 \diamond Mesh operations work to minimize an "energy" functional E of the mesh.

$$E = (1 - \alpha)E_{shape} + \alpha E_{homogeneity}$$

$$E_{shape} = 1 - \frac{36}{\sqrt{3}} \frac{A}{L^2}$$

$$E_{homog.} = 0$$
 $E_{homog.} \rightarrow 1$

$$E_{homog.} = \prod_{i=1}^{N} [(1 - a_i)/(1 - 1/N)]$$

 a_i = fractional area of pixel type iN = total number of pixel types

Fitting a Mesh to Pixel Boundaries

Initial Coarse Mesh

Refining Elements /

Monte Carlo Node Motion and Edge Swapping

Operations to reduce E

Final Mesh

- Examples:
 - Thermal Barrier Coatings
 - MatCASE:

Materials Computation and Simulation Environment

Predict Thermal Conductivity K of Ceramic Thermal Barrier Coatings for Turbine Blades

with James Ruud, NS Hari, James Grande, and Antonio Mogro-Campero, GE Corporate R&D

Funded in part by DOE Advanced Turbine Systems Program

- TBC's allow jet engine blades to operate at higher temperatures.
- Physical measurements of K are difficult, time consuming and expensive. Hardly ever done during quality control.
- OOF could replace measurements during research, development, design, and production.

Thermal Conductivity Measurements

Porosity is not a good predictor of thermal conductivity.

Comparison of Two Specimen Sets

- Consistent correlation for a wide range of microstructures.
- OOF is a good predictor of thermal conductivity.

The MatCASE Project

- Materials Computation and Simulation Environment
- Funded by NSF-ITR.
- Includes Materials Scientists, Physicists,
 Mathematicians and Computer Scientists.
 - Participants are from Penn State, Ford, and NIST.
 - Zi-Kui Liu, Long-Qing Chen, Padma Raghavan, Jorge Sofo, Chris Wolverton, Qiang Du, SAL.
- Goal: To develop integrated computational tools for multiscale materials design.
- OOF2 will be one part of a parallel, grid-enabled, computing environment.

Integration of Four Computational Methodologies

Technology Administration, U.S. Department of Commerce

- OOF2 reflects lessons learned from OOF1.
 - More expandable.
 - More flexible.

Emphases:

- Extensibility and maintainability through proper object-oriented design reflecting the underlying mathematics.
- Generality by making few assumptions about the problems being solved.
- Usability with a clear user interface.
- Sanity with a flexible infrastructure.

OOF2

- Easily extendible to a wide variety of problems
 - elasticity, plasticity, thermal conductivity, mass diffusion, electrical polarization, piezoelectricity, ferroelectricity, Darcy's Law fluid flow, ...

	σ	$=\sum_i k_i \nabla \phi_i$	$-\nabla \cdot \sigma = f$		SCHEMATIC
		Elasticity	Thermal Cond.	?	
	Field Φ	displacement	temperature	?	
	Flux σ	force	heat flow	?	
M	lodulus k	C _{ijkl}	K _{ij}	?	
	Force f	force	heat source, sink	?	

Designed for simple addition of new fields, fluxes, and equations.

- For example (proper design):
 - Physics and Finite Element class structure more closely tied to the underlying mathematics.
 - Allows more physics and more types of finite elements.

Properties can be coded completely independently from the element classes.

OOF2 Code Ingredients

- C++ (core) and Python (interface).
- C++/Python glue code generated by SWIG.
- Libraries:
 - GTK+ graphics.
 - PETSc, MPI parallel solvers.
 - ImageMagick image manipulation.
 - IML++, MV++, SparseLib++ linear algebra.

OOF2 Conceptual Ingredients

- image
- materials
 - assembled from lists of properties
- microstructure
 - materials assigned to groups of pixels
- skeleton
 - only the geometry of the finite element mesh
- mesh
 - skeleton + mathematics + physics
- solution

Interface leads users through the tasks

Graphics Window

Extensibility via Class Hierarchy

- Registered classes represent:
 - Operations on images, meshes, etc.
 - Material properties.
 - Parameters for the above.
- Registrations describe how to create objects in the classes
- Menus and GUI components are created automatically from Registrations.

More Infrastructure

- Underlying menu driven structure (in Python):
 - Specify name, callback function, menu, argument parameters.
 - Menu items created explicitly, or implicitly from Registrations.
- Communication between different code components is by means of a "switchboard"
 - Objects send messages to switchboard.
 - Other objects subscribe to messages.
 - Sending object doesn't have to know who (if anybody) is listening.
 - Allows modular development and use.

OOF2 Control Structure

GUI, Threading & Parallel Processing

- OOF is meant to be an interactive system in which users can experiment with different scenarios in real time.
 - Need a responsive multithreaded interface.
 - Parallel back-end for quick turnaround.
- Still, lengthy computations need to be performed in batch mode, without a GUI.
- "Worker" classes added to menu system to handle different modes of operation.
 - TextWorker, GUIWorker, ThreadedWorker, etc.

OOF2 Control Structure

OOF2 Control Structure

What's Next?

- OOF2.x will add
 - non linear solvers
 - plasticity models
 - time dependent & eigenvalue problems
- OOF3D

- OOF1 is available now at http://www.ctcms.nist.gov/oof/
 - source code for Unix computers
 - precompiled binaries (Linux, SGI, Mac OSX)
 - manuals & tutorials
 - mailing list
- OOF2 will be available real soon now (within a few months, we hope).

